Patients with unilateral Charcot foot: affected versus unaffected foot comparison <u>T.Tsvetkova¹</u>, V.Bregovsky²

¹novel SPb LLC, ²City Diabetological Center, Saint-Petersburg, Russia

MH1

500

300

200

P<0.001

Background and aim

The incidence of those with diabetes who have Charcot arthropathy ranges from 7.5 to 13% [1,2,4]. Presentation is usually unilateral but bilateral involvement has been noted at 5.9 to 39.3% [2]. The tarsometatarsal (Lisfranc's joint) is the most common site for arthropathy, with initial involvement usually occurring on medial part of the foot [3].

The aim of this study was to estimate biomechanical changes in patients with unilateral chronic Charcot arthropathy (medial convexity, rockerbottom).

Subjects and methods

24 patients (23 insulin dependent) with unilateral Charcot foot (medial convexity or/and rocker-bottom) without amputations were evaluated.

Table 1. Characteristic of patients (n=24)

	Age, years	Gender (m/f)	Diabetes type (1/2)	Duration of diabetes, years
Mean (SD)	51 (12)	12/12	23/1	20 (10)
Range	[21,69]			[1,41]

- 12 patients were available for repeated examination (6 patients with rocker-bottom, 5 patients – with medial convexity, 1 patient – with medial convexity and rocker-bottom).
- Rocker-bottom deformity was revealed after 2 and 5.5 years on contralateral feet in 2 patients,
- Minor amputations resulted in exclusion of 1 patient,
- 9 patients colud not walk without assistance

Table 2. Characteristic of patients (n=12)

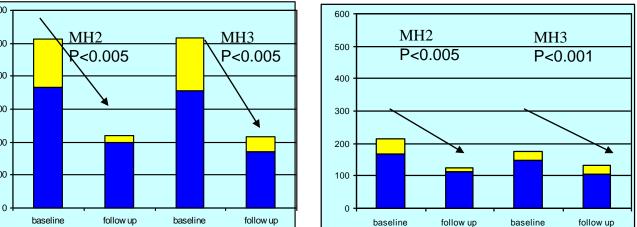
	Age, years	Gender (m/f)	Diabetes type (1/2)	Duration of diabetes, years
Mean (SD)	52 (10)	5/7	11/1	23 (10)
Range	[33,69]			[7,41]

Fig. 3. Significantly different parameters in patients (6) with rocker-bottom (affected feet).

Maximum force, %BW

MH2

baseline


P<0.001

follow up

Fig. 4. Significantly different parameters in patients (6) with rocker-bottom (unaffected foot)

Peak pressure, kPa

Mean pressure, kPa

Force-time integral, %BW*s

Mean pressure, kPa

MH2

P<0.005

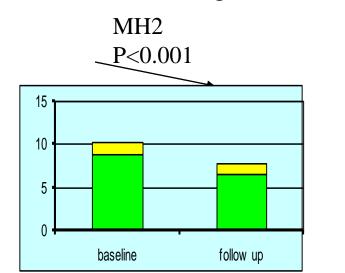
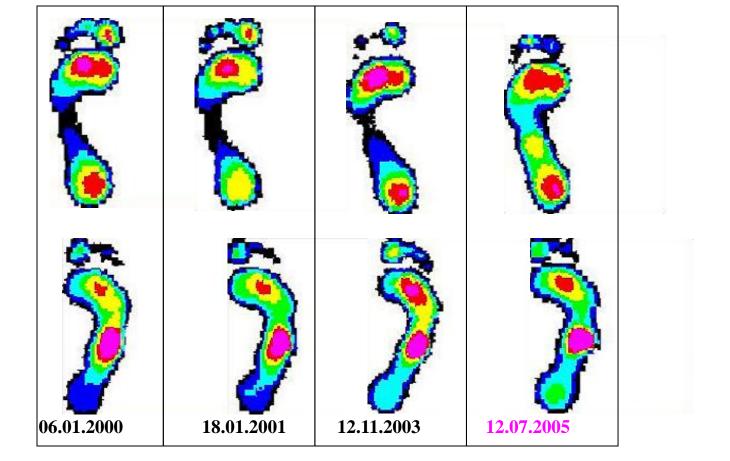



Fig. 5. Significantly different parameters in patients (5) with medial convexity (affected feet)

Pressure-time integral, kPa*s

Force-time integral, %BW*s

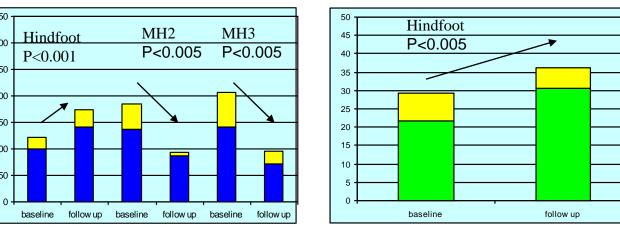


Fig. 6. Significantly different

parameters in patients (5) with medial convexity (unaffected feet). **9Q**

29

Follow up period was equal to (26 ± 21) months with range [4,66].

Pressure distribution measurement protocol and data analysis

- Five dynamic records of each foot were made with first step procedure using emed-at 25 system (novel, Munich)
- Peak pressure (PP, kPa) and mean pressures (MP, kPa), maximum force (MF, %BW), pressure-time (PTI, kPa*s) and force-time integrals (FTI, %BW*s), contact time (CT, ms), instant of peak pressure (IPP, %ROP) and instant of maximum force (IMF, %ROP) were calculated with novelprojects software
- automask program was used for foot areas detection: hindfoot (Hf), midfoot (Mf), metatarsal heads (MH1-5), toes (T1, T2, T345)
- Parameters were calculated for each subject and averaged across all patients. Statistical analysis was performed with ANOVA

Results

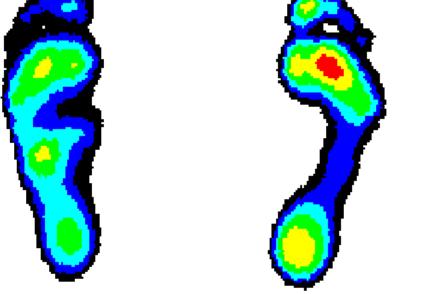
Table 3. Significantly (p<0.001) different parameters: affected vs. unaffected foot (24 patients)

	Tf	Hf	Mf	MH1	MH2	MH3	MH4	MH5	T1	T2	T345
PP	NS	De	In	NS	De	De	De	De	De	De	NS
MP	De	De	In	De	De	De	NS	De	De	De	NS
MF	NS	De	In	De	De	De	De	De	De	NS	NS
PTI	NS	De	In	De	De	De	De	De	De	De	NS
FTI	De	De	In	De	De	De	De	De	De	De	De
СТ	NS	De	In	De	De	De	De	De	De	De	De
IPP	De	NS	In	De	NS	NS	NS	NS	De	De	NS
IMF	NS	NS	NS	De	De	De	De	De	De	De	

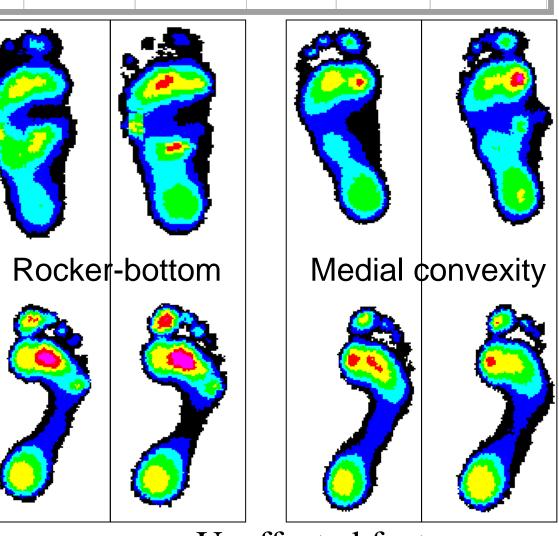
Fig. 7. Case history 1: rockerbottom on contralateral foot in 66 months (female, 43 years, IDDM) 34 years, pressure distribution measurements were carried out in 12, 34, and 20 months after first measurement).

Conclusion

<u>Q</u>q 25.05.2000 11.09.2000


Fig. 8. Case history 2: medial convexity in 4 months (male, 39 years, IDDM 27 years).

The biomechanical changes during follow up period are different in affected vs. unaffected foot.


Affected foot:

- Elevated loading of midfoot is due to the fixed bony midfoot deformities. The Charcot foot is characterized by tarsal collapse of the medial or lateral longitudinal and transverse arches [5]
- Medial shift of loading of rocker-bottom foot could be due to several reasons. The first ray is the most prominent anatomic structure to bear the weight. A higher load may give an additional stability Decrease of second metatarsal head loading in medial convexity foot is caused with increasing of medial forefoot loading Unaffected foot: • Loading of medial midfoot is elevated and loading of big toe is decreased. Maximum force occurred later under the big toe • Unaffected foot is playing a greater role in weight bearing resulting in significant increasing of hindfoot loading. At the same time loading of second and third metatarsal heads is significantly decreased.

(De - less, In - greater in affected foot).

Affected feet Unaffected feet Fig.1. Averaged maximum pressure pictures for 24 patients with unilateral Charcot foot (rocker-bottom or/and medial convexity)

Unaffected feet

baseline follow up baseline follow up Fig. 2. Average MPP: affected vs. unaffected feet

References

- Slater R, Ramot Y, Buchs A, Rapoport M: The diabetic Charcot foot. *IMAJ*; 6:280–283, 2004.
- Jensen P, Steinberg J.: Managing ulcers on the Charcot foot: *Podiatry today;* 2003
- Sommer T, Lee T: Charcot foot: the diagnostic dilemma: *JAAFP*; 64:, 2001 3.
- 4. Fabrin J, Larsen K, Holstein P: Long-term follow up in diabetic Charcot feet with spontaneous onset. *Diabetes Care*; 23:796-800, 2000.
- 5. Sinacore D, Bohnert K, Hastings M, Johnson J: Mid foot kinetics characterize structural polymorphysm in diabetic foot disease. *Clinical Biomechanics;* 23:653-661, 2008.